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Abstract

In repeated contests with private information, weak contestants prefer to appear strong while
strong contestants prefer to appear weak. In contrast to a single contest, this leads to an equilib-
rium where effort is not strictly monotonic in ability and allows for a less able contestant to win
against a contestant of higher ability. While the aggregate payoffs of contestants are higher per
contest than in the single contest benchmark, aggregate output per contest is lower. Depending
on the economic setting, the presence of private information can lead to productive or allocational
inefficiencies.

1 Introduction

Contests are frequently used to stimulate effort from economic agents. These contests
are often dynamic and offer multiple prizes, as in the case, for example, of innovation
races and employee competitions. In both of these settings, there is extensive litera-
ture discussing how to best design contests to maximize the output of the contestants.1

However, the behavior of economic agents in repeated contests is not fully character-
ized in situations where agents have private information about ability or the cost of
production.

In this paper, we study repeated contests in a framework designed to capture
both moral hazard (hidden effort choice) and adverse selection (privately known abili-
ties). That is, when contestants’ abilities are private information, the contestants must
consider the signaling effect that exerting effort in early contests will have in future con-
tests. Contrary to the conventional wisdom that all contestants want to appear strong
to their opponents, countervailing incentives emerge in this setting and strategies are
non-monotonic. These incentives can create multiple economic inefficiencies, depending
on the economic context. First, overall output in repeated contests is lower relative to
the single contest benchmark. In the contests described above, this reduction in output
is a negative welfare result. Second, a player with low ability may beat a player with
high ability in the first contest or both contests. In multi-stage tournaments, this may
prevent the best contestant from winning the tournament, or even making the later
rounds.

1Gallini and Scotchmer (2002) survey the discussion about the optimal “effective time” for the length of intellectual
property rights that provides incentives for initial innovations without stifling subsequent innovation. In labor market
competitions, see Ridlon and Shin (2013), Ederer (2010), and Aoyagi (2010).
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We consider the simplest setting that captures the signaling incentives of repeated
contests: two contestants, who have either low or high ability, competing in two succes-
sive contests. In each contest, the contestants exert effort with the goal of producing
the most output. The player who does so wins a prize.2 The amount of effort it takes
to produce output depends on individual ability, which is privately known by each con-
testant. After the first contest, the output of each contestant is publicly observed and
players can update their beliefs about their opponents’ ability. Given this additional
information, contestants choose a new level of effort for the second contest. The con-
testants choose their effort levels to maximize their total payoff over the two contests.

We show there is a unique symmetric equilibrium for this repeated contest game.
To derive equilibrium strategies, we utilize the findings in the single all-pay contest with
asymmetric information presented by Siegel (2014). In particular, we use his equilib-
rium construction to solve for the optimal strategies and expected payoffs in the second
contest for any set of beliefs. From these payoffs, we show that a contestant with high
ability will always prefer to have his opponent believe they have low ability. Likewise,
a contestant with low ability wants to appear to have high ability. While uniqueness
of equilibrium in dynamic games with signaling is not common, the incentives to mis-
represent type in this setting rule out the possibility of different off-path beliefs which
would be necessary to form any other equilibria. Additionally, these incentives lead to
an equilibrium that has partial pooling in the first contest, i.e. there are outputs which
can be produced by either low ability or high ability contestants. Low ability players
who produce output in this range are bluffing while high ability players who do so are
sandbagging.3

Bluffing is used to discourage an opponent by appearing to be strong. In our
setting, this means having high ability. Avery (1998) shows that this type of behavior
can emerge in a single dynamic contest where bidders submit jump bids. Additionally,
in dynamic contests with hidden actions and incomplete information, contestants bluff
by signal-jamming their opponents. This is found in models of labor market contests
(Ederer (2010)), all-pay auctions (Ortega Reichert (2000)), and duopoly competition
(Mirman et al. (1993)). Sandbagging, as described in Rosen (1986), is used to lull
opponents into a false sense of security.4 In a framework similar to ours, but with only
one type of active contestant, Münster (2009) shows that the active contestant may
sandbag by sitting out of the first contest in order to win the second contest more
easily.

Both bluffing and sandbagging are present when bidders are allowed to send costly
signals before an auction as in Hörner and Sahuguet (2007). If the bidder makes a sunk
investment in the form of a jump bid before the auction, then the other bidder must
match it to enter the auction. Bidders with moderate values may use a jump bid to
keep other competitors out of the auction while bidders with high values may allow
opponents to enter the auction freely in order to appear weak and face less competition

2For a general description of static (one-shot) games of this kind, see Siegel (2009).
3The terms sandbag and bluff are used in the literature to describe a player signaling to his opponent that he is weak

when he is actually strong and strong when he is actually weak, respectively. These terms originate from the game of
poker. In poker, sandbagging is when a player calls or does not increase the pot when he believes he has the better hand.
Bluffing is when a player bids up the pot when he does not think he has the best hand.

4Additionally, sandbagging can be used to take advantage of a tournament structure as described by Kräkel (2014).
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in the auction itself.
In our setting of repeated contests, both tactics are used because each contestant

is concerned with how opponents of similar ability react to the outcomes of the first
contest. For example, low ability contestants would be discouraged facing a strong
opponent while a high ability contestant would react by increasing effort. On the
other hand, a low ability contestant would be encouraged by a weak opponent and
increase effort while a high ability contestant would reduce effort, thinking he could
win with ease. As in Hörner and Sahuguet (2007), this leads to non-monotonicities in
the equilibrium, where a contestant with low ability may beat one with high ability in
either one, or both of the contests. In elimination tournaments and multi-stage auctions,
designers often prefer to have the best contestants in the final round.5 However, if the
actions of the first round are publicly observable, top contestants would be worried
about revealing information about their ability to their future opponents. This may
cause them to lose to a lesser opponent in the first round, leading to a less competitive
final round.

Lastly, we consider the effect of multiple contests on the aggregate output of the
contestants. The consequence of bluffing and sandbagging is a decrease in aggregate
output in the first contest when the difference between high and low ability contestants
is large enough. In the setting of Münster (2009), the one active type has an incentive
to sandbag, and output in the first contest is always reduced compared to a single
contest benchmark. On the other hand, the effects are the opposite in Ederer (2010)
before the midterm evaluation. All contestants have the incentive to bluff in order to
discourage their opponents after the evaluation. This increases aggregate output before
the evaluation relative to the setting where no evaluation was given.

Despite the incentives to hide true ability, partial pooling in the first contest leads
to asymmetries in the second contest. These asymmetries lead to reduced aggregate
output in the second contest. This is consistent with the results of Che and Gale (2003)
who show that asymmetries between contestants reduces total sunk expenditures in
the contest. Combining the effects of the first and second contests, we show that the
reduction of output in the second contest always outweighs the potential increase in
output in the first contest. Therefore the aggregate output of contestants in repeated
contests is lower than the output of a single contest benchmark.6

The paper is organized as follows. In section 2 we introduce the model of the
contest played in each stage. In section 3, we characterize the equilibrium of a single
contest and discuss the payoffs to the contestants in terms of their ability and their
opponent’s perception of their ability. In section 4 we solve for the unique equilibrium of
the successive contest. In section 5 we discuss welfare implications. Section 6 concludes.

5See Moldovanu and Sela (2006) and Fullerton and McAfee (1999), respectively.
6In dynamic contests with complete information and uncertain outcomes, contestants who fall behind in early stages

will put in less effort moving forward (e.g. Harris and Vickers (1987)). Because each period is a separate contest in our
model, reduced output is not due to this discouragement effect. See Konrad (2012) for a detailed survey of dynamic
contests under complete information.
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2 Stage Game

We first introduce the fundamentals of the contest that is played in each stage of the
game of successive contests. Two contestants, player 1 and player 2, are independently
endowed with ability, ai for i = 1, 2. Ability can either be low, a = a`, or high, a = ah.
The probability of each player having high ability is given by Pr(a1 = ah) = µ1 and
Pr(a2 = ah) = µ2. The endowment of ability is private information for each player.

Other than probability of having high ability, the two contestants are ex-ante
identical. Players compete by producing output, x, which is a function of their ability
and effort, e. We assume the output function takes the form x(a, e) = a · e. The
player that produces the most output receives a prize. If the two players produce the
same output, then the prize is given randomly with each contestant winning with equal
probability. The prize has the same value for each contestant which is normalized to
one.

We define c(e) to be the cost function of effort for each player, regardless of ability.
This function is assumed to be twice differentiable on the non-negative reals, increasing
and weakly convex, with the cost of zero effort being zero.

We normalize ability so that a` = 1 and ah > 1. Then the marginal cost of output
for the high and low ability workers are 1

ah
c′( x

ah
) and c′(x) respectively.7 The payoffs of

each agent are

π̃i(ai, ei, a−i, e−i) =

 1− c(ei), x(a−i, e−i) < x(ai, ei)
1/2− c(ei), x(a−i, e−i) = x(ai, ei)
−c(ei), x(a−i, e−i) > x(ai, ei)

Given a strategy of their opponent, the expected payoffs of each contestant is equal to
the probability that the contestant wins less his cost of effort. Here we abuse notation
and let xi = x(ai, ei) for i = 1, 2. Then the expected payoffs for each player are

E[π̃i(ai, ei)] = Pr(x−i < x(ai, ei)) +
1

2
Pr(x−i = x(ai, ei))− c(ei).

Since players know their own ability and the relationship between effort and out-
put is deterministic, players choosing their effort level is equivalent to them choosing
their output.8 Therefore, we will write the strategies of players in terms of output
to ease comparisons of players with different abilities. Additionally, it puts players’
strategies in terms of what their opponents will observe. With this in mind, we write
contestants’ payoffs in terms of output.

E[πi(xi, ai)] = Pr(x−i < xi) +
1

2
Pr(x−i = xi)− c(xi/ai), for i = 1, 2.

In the following sections, we will define players’ strategies in terms of output and
describe the effort of players only in the context of providing intuition for the results.

7The convexity of the cost function amplifies abilities effect on the marginal cost of output as ∂
∂x
c
(
x
a

)
= 1

a
c′
(
x
a

)
,

where c′( x
ah

) ≤ c′(x).
8Equivalent to the notion of private information about ability is private information about the cost of output.

Additionally, if the cost of effort is linear, then this framework is equivalent to an all-pay auction where values are
private information and bids are observed
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In the section immediately following, players will maximize payoffs above in a single
contest. In section 4, which contains the main model of successive contests, abilities for
each player stay the same for both contests, and players will be maximizing the sum of
payoffs for two contests, without discounting.

3 Single Contest

We first find the equilibrium strategies of players engaged in a single contest described
in the previous section. This will serve two purposes when we analyze repeated contests.
First, the payoffs of the contestants and the output they produce in a single contest
will serve as a benchmark to better understand the strategic effects of an additional
contest. Second, the equilibrium payoffs will be used to calculate continuation payoffs in
the repeated contest setting. After the first of two contests, each player will believe that
their opponent has high ability with some probability. For each set of these probabilities,
the single contest equilibrium characterized in this section will be played in the second
contest. Therefore, the expected payoffs of contestants in this section will be equal to
the continuation payoffs of the second contest in the next section.

For the remainder of this section, we name our two players the strong player and
the weak player, so that i = s, w where µs ≥ µw. This implies that, the strong player,
player s, is at least as likely to have high ability as player weaker player, player w,
ex-ante. However, this does not rule out the possibility of the weaker player having
high ability or the stronger player having low ability, or both.

3.1 Strategies

The strategies of each player consist of output distributions for both high and low ability
realizations. We define Li(x|µi, µ−i) ≡ Pr(xi ≤ x|ai = a`, µi, µ−i) and Hi(x|µi, µ−i) ≡
Pr(xi ≤ x|ai = ah, µi, µ−i) which denote the distribution of output of player i given
he has low ability and high ability respectively. Additionally, we define Fi(x|µi, µ−i) ≡
Pr(xi ≤ x|µi, µ−i) to be the ex-ante output distribution of player i. This is also the
output distribution of player i from the perspective of player −i. For these distri-
butions to be consistent with the information sets of the contestants, we must have
Fi(x|µi, µ−i) = (1−µi)Li(x|µi, µ−i) +µiHi(x|µi, µ−i). Additionally, we let `i(x|µi, µ−i),
hi(x|µi, µ−i) and fi(x|µi, µ−i) be the densities induced from Li(x|µi, µ−i), Hi(x|µi, µ−i)
and Fi(x|µi, µ−i).9 For simplicity, we suppress the probabilities, (µi, µ−i), from the
notation of the output distributions for the remainder of this section.

We denote support of the strategies of each type of player by X i
` ≡ {x : `i(x) > 0}

and X i
h ≡ {x : hi(x) > 0}. For a given expected output distribution of their opponent,

the best response set for a given contestant and given ability is defined as

BRi(a
i) ≡ {x : E[πi(xi, ai)] ≥ E[πi(x̃i, ai)], ∀x̃i ≥ 0}.

9Here we use the extended definition of density using Dirac-delta functions where necessary to properly define these
densities when their corresponding distributions have mass points.
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An equilibrium is a set of output distributions, (Ls(x), Hs(x), Lw(x), Hw(x)), such that
X i
` ⊆ BRi(a`), and X i

h ⊆ BRi(ah) for i = s, w. The general properties of an equilibrium
are outlined in the following lemma; the proof is in the appendix.

Lemma 3.1. In any equilibrium, players’ distributions of output, Hs(x), Ls(x), Hw(x),
and Lw(x), are continuous on (0, x∗), where x∗ ≡ sup{BRs(a`)∪BRs(ah)} = sup{BRw(a`)∪
BRw(ah)} and inf{BRs(a`) ∪BRs(ah)} = inf{BRw(a`) ∪BRw(ah)} = 0.

From these properties, it must be that for both the strong and weak contestants,
the combined best response sets of the low ability and high ability type must be an
interval. Moreover, this interval for each contestant is the same. Intuitively, if the
supremum of the interval was smaller for one of the contestants, then the other con-
testant would be wasting effort by sometimes producing more output than would ever
be necessary to win the contest. Moreover, if there are gaps of positive measure in this
combined interval for either contestant, then the opponent would have no incentive to
produce output in the interior of the gap. However, this leads to a gap in the best
response intervals for both players, but this cannot happen. By this argument, which
is formalized in the proof of Lemma 3.1, the infimum of the best response interval of
each player must be 0. Lastly, if either player played a positive output with positive
probability, this implies that their opponent must have a gap in their combined best
response interval behind this output. We argued that this gap cannot exist.

While the fundamentals of this model are somewhat different to those studied by
Siegel (2014), the properties of the equilibrium strategies above are the same. Moreover,
he shows that when types are independently drawn and value of winning the contest
increases in type, then there is a unique equilibrium which must be monotonic, i.e., for
both contestants, all actions of the high type are at least as high as all actions of the
low type. These properties hold in our setting where types are abilities and bids are
outputs.10 This implies that there is a unique equilibrium that is monotonic, so that
for i = s, w and any x ∈ BRi(ah) and x′ ∈ BRi(a`) it must be that x′ < x. This fact,
combined with the previous lemma implies that x∗i ≡ sup{BRi(a`)} = inf{BRi(ah)},
for i = s, w.

Proposition 3.2 (Unique Equilibrium - Single Contest). There is a unique equilibrium,

(L∗s(x), H∗s (x), L∗w(x), H∗w(x)), where X`
i = BRi(a`) = [0, x∗i ], X

h
i = BRi(ah) = [x∗i , x

∗]
for i = s, w and 0 ≤ x∗s ≤ x∗w ≤ x∗. These output distributions are given by

L∗
s(x) =

{
c(x)
1−µs , 0 ≤ x ≤ x∗s

1, x∗s ≤ x ≤ x∗
H∗
s (x) =


0, 0 ≤ x ≤ x∗s

c(x)
µs
− c(x∗

s)
µs

, x∗s ≤ x ≤ x∗w
1 + c(x/ah)

µw
− c(x∗/ah)

µw
, x∗w ≤ x ≤ x∗

L∗
w(x) =


c(x)
1−µw + L∗

w(0), 0 ≤ x ≤ x∗s
1 + c(x/ah)

1−µw −
c(x∗

w/ah)
1−µw , x∗s ≤ x ≤ x∗w

1, x∗w ≤ x ≤ x∗
H∗
w(x) =

{
0, 0 ≤ x ≤ x∗w

1 + c(x)
µw
− c(x∗)

µw
, x∗w ≤ x ≤ x∗

10While, in this section, we borrow heavily from the properties of Siegel (2014) and follow his construction to char-
acterize the unique equilibrium, the setting is slightly different and therefore we cannot directly use his results. His
contestants differ on value of the prize rather than ability and the cost of output, which is a simple bid, is linear.
Monotonicity holds in the current model as a player’s marginal cost for a given output is ranked by type, where his
contestants marginal value is ranked by type for all bids. A simple transformation makes these two settings isomorphic.
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where x∗s = c−1(1− µs), x∗w = c−1(1− µw), and x∗ = ahc
−1
(
µw + c

(
c−1(1−µw)

ah

))
, and

L∗w(0) = 1
1−µw

[
µs − µw −

[
c
(
c−1(1−µw)

ah

)
− c

(
c−1(1−µs)

ah

)]]
.

Here we highlight the important details of the construction of the equilibrium; see
the appendix for the technical details.

First from Lemma 3.1, the combined best response sets for the strong player and
the weak player are the same, which we denote by the interval, [0, x∗]. Second, since
the equilibrium is monotonic, the best response sets of each ability are disjoint for each
player, with the set for high ability ranging over larger outputs than the set for low
ability. Third, since the strong player is more likely to be high ability, the length of the
best response set of high ability for is longer for the strong player. We depict the basic
structure of these best response sets in Figure 1.

x∗

x∗w

x∗s

x∗

BRw(a`)

BRs(a`)

BRw(ah)

BRs(ah)
Strong:

Weak:

Figure 1: Representation of best response sets of the strong and weak players.

To characterize the output distributions of each contestant for each ability level,
we first find the expected output distributions that each contestant must face to be
indifferent between output levels when each best response set. We start from x∗ and
work backwards toward zero. We will be able to pin down the value of x∗ and sub-
sequently x∗w and x∗s, using that fact that only one player can have a mass point at
x = 0, Fi(0) > 0, and for the other F−i(0) = 0 and F−i(x) > 0 for x > 0. Therefore the
expected output distribution that hits zero first will pin down the x∗.

For output levels between x∗ and x∗w, the high ability type of each contestant must
be indifferent. This means that the marginal benefit of increasing output must equal
the marginal cost, i.e. fi(x) = c′(x/ah) for x ∈ (x∗w, x

∗) and i = s, w. This implies that
the output distributions for this range of output are the same for both contestants. For
output between x∗w and x∗s, fs(x) must equal the marginal cost of the weak contestant
and fw(x) is equal to the marginal cost of the strong contestant. Since this range is
a best response of the low ability type of the weak player and the high ability type
of the strong player, this implies that fs(x) = c′(x/a`) = c′(x) and fw(x) = c′(x/ah).
Lastly, for the output range of x∗s to x = 0, the low ability type of each player must be
indifferent, and therefore fi(x) = c′(x).

Given the densities for all levels of output, we can compute the ex-ante expected
output distributions for each player given the condition that Fi(0) = 0 for one contes-
tant. This must be the strong contestant as fs(x) ≥ fw(x) for all output levels between
0 and x∗. Intuitively, it is the weaker contestant that has a mass point at zero, i.e. if
this player draws low ability, they may not put any effort into the contest.
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The expected output distribution of the weak and strong players are

F ∗s (x) =

{
c(x), 0 ≤ x ≤ x∗w

1− µw − c
(
c−1(1−µw)

ah

)
+ c
(
x
ah

)
, x∗w ≤ x ≤ x∗

F ∗w(x) =

{
Fw(0) + c(x), 0 ≤ x ≤ x∗s

1− µw − c
(
c−1(1−µw)

ah

)
+ c
(
x
ah

)
, x∗s ≤ x ≤ x∗

An example of these distributions with ah = 2 and c(e) = 1
2
e2 is depicted below.

x∗wx∗s x∗

1

F ∗w(0)

c.d.f.

F ∗w(x)

F ∗s (x)

Figure 2: Expected output distributions of contestants in a single contest.

Because the best response sets of low and high ability types are disjoint for each
contestant, we can recover the output distributions of both high and low ability types
of both contestants.

Strong Player Weak Player

x∗s x∗w x∗

1

Figure 3: Output distributions for high and low ability type of the strong
and weak player in a single contest. (ah = 2 and c(e) = 1

2
e2)

x∗s x∗w x∗

1

H∗(x)F ∗(x)L∗(x)
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3.2 Payoffs

From the equilibrium of the single contest, our main objects of interest are the payoffs
of the contestants. Given the uniqueness of this equilibrium for any pair of probabilities
(µs, µw), these payoffs will equal the expected payoffs the contestants expect to recieve
in the second contest, given the beliefs that result from the first contest. We denote the
payoffs, which are functions only of the contestant’s ability and the ex-ante probabilities
of each contestant being high ability as vi(µi, µ−i, a

i) = E[πi(x̂i, ai)] where x̂i ∈ BRi(a
i).

Corollary 3.3. The ex-interim expected payoff of each contestant is

vs(µs, µw, ah) = vw(µw, µs, ah) = 1− µw − c
(
c−1(1− µw)

ah

)
vs(µs, µw, a`) = µs − µw −

[
c

(
c−1(1− µw)

ah

)
− c

(
c−1(1− µs)

ah

)]
vw(µw, µs, a`) = 0.

Proof. Each type of each contestant is indifferent between all outputs in their best
response set. In particular, because x∗ is in the best response set of high ability contes-
tants, their expected payoffs are equal to the value of winning less the cost of producing
output x∗, since, if they produce x∗, they will win with certainty.

vs(µs, µw, ah) = vw(µw, µs, ah) = 1− c(x∗/ah) = 1− µw − c
(
c−1(1− µw)

ah

)
Similarly, since x = 0 is in the best response set of a low ability contestant, the expected
payoffs of low ability contestants is probability they win, given they exert no effort. This
is the probability that your opponent puts in no effort.11

vs(µs, µw, a`) = (1− µw)Lw(0) = µs − µw −
[
c

(
c−1(1− µw)

ah

)
− c

(
c−1(1− µs)

ah

)]
vw(µw, µs, a`) = (1− µs)Ls(0) = 0

For both the strong and weak contestants who are high ability, the expected
payoff is entirely determined by the value of x∗. This value is pinned down by the
ex-ante expected output distribution of the stronger contestant which is constructed
by making the weaker player indifferent. Therefore, x∗ is a determined entirely by
µw, the probability that the weaker player has high ability. Intuitively, high ability
players are confident they can win, but the overall competitiveness of the contest will
determine how much effort they need to exert to do so. This payoff decreases as µw
increases, implying that increased competition will increase the effort of high ability
players, decreasing their expected payoff.

11Here we technically are assuming the contestant wins all ties at zero, but if the agent exerts a tiny amount of effort
and we let that effort shrink to zero, then this is the payoff of the agent in the limit. Since the payoffs are continuous,
these limits must be the payoffs of the low ability contestants.
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For contestants that are low ability, expected payoffs are determined by how
often they can freely when a contest. The strong contestant will exert no effort with
probability zero, while the weak contestant will exert no effort with a probability that
increases with the strength of their opponent. Intuitively, a low ability player becomes
discouraged when he believes that his opponent is likely to have high ability. Therefore,
the low ability type of the weaker contestant will never when a contest when they exert
no effort leading to an expected payoff of zero. The stronger contestant who has low
ability will have positive expected payoffs which increase with the contestant’s relative
strength.

The comparative statics of these payoffs are important for the analysis of the two
contest model as the payoffs in the second contest are the same as in the single contest
given the strength of each player. The contestants can effect their perceived strength in
this second contest through their choice of output in the first contest. For a contestant
with high ability, payoffs decrease when the contest appears more competitive. There-
fore, they may prefer to look weak entering the second contest in order to reduce the
perceived level of competition. On the other hand, the payoffs of low ability contestants
increase when they appear strong to their opponent. These countervailing incentives,
which will be formalized in the following section, are a significant strategic force in the
first contest of the two contest model.

3.3 Output

The second outcome of interest in the single contest is the expected total output of the
contestants. We will use this output as a benchmark to compare with per-period output
in the repeated contest model. In order to have a closed form solution for expected
output, we impose a parametric structure to the cost function.

Corollary 3.4. If we let c(e) = keα, with k > 0 and α ≥ 1,12 then E[xs(µs, µw, a
s) +

xw(µw, µs, a
w)], the ex-ante expected aggregate output is(

α

α+ 1

)(
1

k

)1/α
[(

1− 1

aαh

)(
(1− µw)

α+1
α + (1− µs)

α+1
α

)
+ 2ah

(
µw +

1− µw
aαh

)α+1
α

]
.

A significant determinant of this total output is µw, or the probability the weaker
contestant has high ability. Additionally, while an increase in µw will increase output,
an increase in µs will have the opposite effect.

Corollary 3.5. For a fixed value of µw, an increase in µs leads to a reduction in
expected aggregate output.

Proof.

∂

∂µs
E[xs(µs, µw, a

s) + xw(µw, µs, a
w)] = −

(
1

k

)1/α(
1− 1

aαh

)
(1− µs)

1
α < 0.

12These are implied by the assumptions of a cost function that is strictly increasing and weakly convex
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This reflects the decrease in the overall competition of the contest when one
contestant is stronger than the other. Therefore the overall competitiveness of a contest,
in the sense of expected output produced, is effected both by the absolute strength of
the two contestants and their strengths relative to each other. Intuitively, if a very
strong contestant, µs ≈ 1, and a very weak contestant, µw ≈ 0, compete against each
other, the weak person would likely put in little or no effort, thinking that winning is
very unlikely. Additionally, the strong contestant would know the weak contestant is
putting in low effort and reduce their effort accordingly.

4 Repeated Contests

We now turn to the main model of the paper, a game of two repeated contests where
agents are privately informed about their ability. We assume the contestants are sym-
metric, ex-ante, and they are equally likely to have low or high ability. The contestants
maximize the sum of expected payoffs in each contest, and their abilities do not change
after the initial draw of types.

After realizing their respective abilities, contestants play the first contest. Once
the first contest ends, the outputs of each contestant become public information. Con-
testants use this information to update their beliefs about their opponent’s ability prior
to competing in the second contest. Because these outputs are commonly observed, first
order beliefs are sufficient for characterizing optimal strategies. In particular, beliefs
which are consistent with the first period equilibrium strategy will have the same effect
on the strategies of the second contest as the ex-ante probabilities of being high ability
have in the single contest model.

Given a strategy of player −i, we denote expected payoffs of player i over the two
contests as

E[πi(xi1, x
i
2, a

i)] = E[πi1(xi1, a
i)] + E[πi2(xi2, a

i)|µ(xi1)]

= Pr(x−i1 < xi1) +
1

2
Pr(x−i1 = xi1)− c

(
xi1/a

i
)

+ Pr(x−i2 < xi2|µ(xi1)) +
1

2
Pr(x−i2 = xi2|µ(xi1))− c(xi2/ai) for i = 1, 2.

4.1 Strategies

For each player i = 1, 2, we let Li1(x) and H i
1(x) denote the first period output distri-

butions of a contestant with low ability and high ability respectively. Then the ex-ante
expected output distribution is F i

1(x1) = 1
2
Li1(x1) + 1

2
H i

1(x1), for i = 1, 2. Additionally,
we denote f i1, `i1 and hi1 as the densities that are induced from the distribution functions

F i
1, Li1 and H i

1.13 Lastly, define Xh,i
1 = {x|hi1(x) > 0} and X`,i

1 = {x|`i1(x) > 0}. Since
contestant’s are symmetric, we will restrict attention to equilibria that are symmetric.

A set of output distributions {H i
1(x1), Li1(x1), H i

2(x2|µi, µ−i), Li2(x2|µi, µ−i) for i =
1, 2} form a symmetric perfect Bayesian equilibrium (SPBE) for two successive contests
if

13Again we are using the extended definition of density using Dirac-delta functions where necessary.
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1. strategies are symmetric: H1
1 (x) = H2

1 (x), L1
1(x) = L2

1(x), H1
2 (x|µ1, µ2) = H2

2 (x|µ2, µ1),
and L1

2(x|µ1, µ2) = L2
2(x|µ2, µ1),

2. contestants play the unique Bayes Nash equilibrium in the second contest: for
i = 1, 2 and for every (µi, µ−i),

(H i
2(x|µi, µ−i), Li2(x|µi, µ−i)) =

{
(H∗w(x|µi, µ−i), L∗w(x|µi, µ−i)), if µi ≤ µ−i
(H∗s (x|µi, µ−i), L∗s(x|µi, µ−i)), if µi > µ−i

3. players update beliefs according to Bayes rule when feasible:14

µi = µ(xi1) =
h1(xi1)

h1(xi1) + `1(xi1)
, for i = 1, 2, and

4. given (2) and (3), contestants always choose an optimal output in the first contest:

for i = 1, 2, for every xi1 ∈ X
`,i
1 player i chooses an

xi1 ∈ arg max
xi

E[π(xi1, x
i
2(µ(xi1), µ(x−i1 ), a`), a`)] ≡ BRi(a`),

and for every xi1 ∈ X
h,i
1 player i chooses an

xi1 ∈ arg max
xi

E[π(xi1, x
i
2(µ(xi1), µ(x−i1 ), ah), ah)] ≡ BRi(ah).

In the single contest section, we found the unique strategies that satisfy condition
(2). To find the strategies of each type of player in the first period that satisfy (4),
we first examine how output in the first contest affects expected payoffs in the second
contest. From condition (2), for a given set of beliefs that arise from outputs in the
first period, the expected payoffs for each player are vi(µ(xi1), µ(x−i1 ), ai). Therefore the
payoffs to player i for the two contests can be written in terms of output in the first
contest.

E[πi(xi1, x̂
i
2(µ(xi1), µ(x−i1 ), ai), ai)] = E[πi1(xi1, a

i)] + E[vi(µ(xi1), µ(x−i1 ), ai)]

Previous analysis showed that for a given belief of the opponent, a high ability
contestant will have higher expected payoffs if his opponent believes he is low type with
high probability. Furthermore, it showed that a low ability contestant will have higher
expected payoffs if his opponent believes he is high type with high probability. The
following proposition shows that in expectation, high ability players always prefer to
look weaker entering the second contest, while low ability players always prefer to look
stronger. The proof of this proposition and other results of this section are relegated
to the appendix.

Proposition 4.1 (Countervailing Incentives). For all µi ∈ (0, 1), expected payoffs in the
second contest decrease for high ability players as µi increases, ∂

∂µi
E[vi(µi, µ−i, ah)] < 0,

and increase with µi for low ability players, ∂
∂µi
E[vi(µi, µ−i, a`)] > 0.

14Using the extended definition of density allows agents to update their beliefs even when they see their opponent
produce an output where the distribution has a mass point. For example, if the H1 has a mass point at x, while L1 does
not, this definition implies µ(x1) = 1.
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In particular, the marginal effect of beliefs on payoffs in the second contest is
given by

∂

∂µi
E[vi(µi, µ−i, ah)] = d(µi)(Fµ−i(µi)− 1) < 0 and

∂

∂µi
E[vi(µi, µ−i, a`)] = d(µi)Fµ−i(µi) > 0,

where d(µi) ≡
[
1 +

∂

∂µi
c

(
c−1(1− µi)

ah

)]
and Fµ−i(µi) = Pr(µ−i ≤ µi).

The convexity of the cost of effort implies that d(µi) ∈
[
ah−1
ah

, 1
)

for all µi, which

guarantees that these incentives are strict.
Differences in marginal cost of effort for the first contest, and the incentives stem-

ming from the second contest combine to require that the belief function, µ(x), increases
in first period output, in equilibrium. If it does not, a higher output would result in a
lower belief about the ability of the contestant. From condition (3), this implies that
the higher output must be in the BR(a`) and the lower output will be in BR(ah).
However, if the lower output ∈ BR(ah), then the low ability player must strictly prefer
the lower output to the higher output, as the marginal cost of this contestant for the
high output is larger and the expected payoffs in the second contest would be higher
for the lower output.

Corollary 4.2 (Monotonic Beliefs). In every SPBE, µ(x) is weakly increasing in x for
all x ∈ X1 = Xh

1 ∪X`
1.

In addition to restricting the belief function on the equilibrium path, the coun-
tervailing incentives also eliminate multiplicity of equilibria. Therefore, in this setting,
there is a unique symmetric equilibrium even without additional equilibrium refine-
ments.

Theorem 4.3 (Uniqueness of Equilibrium). There is a unique symmetric perfect Bayes
Nash equilibrium {(L∗1(x1), L∗2(x2|µi, µ−i)), (H∗1 (x1), H∗2 (x2|µi, µ−i))}.

The following lemmas show that equilibrium strategies in the first contest have
no atoms and there are no gaps in the best response sets.

Lemma 4.4. There is no output that is played with positive probability and Pr(win|x) =
F1(x) is continuous.

Lemma 4.5. BR(a`) and BR(ah) are intervals where 0 = x`,∗ ≤ xh,∗ < x∗` ≤ x∗h
and we define x`,∗ = inf{BR(a`)}, x∗` = sup{BR(a`)}, xh,∗ = inf{BR(ah)} and x∗h =
sup{BR(ah)}.

Lemma 4.4 implies that first period payoffs are continuous in output. Further-
more, there can be no gaps in the best responses of each type of contestant. In other
games with signaling, gaps may exists when off path beliefs prevent players from choos-
ing actions. However, any pathological belief will benefit at least one type of contestant
due to their countervailing incentives. Therefore, if there were gaps in best response
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sets, and therefore outputs where density is zero for contestants of both high and low
ability, then one of the player types would benefit from deviating to an output in the
gap.

Additionally, the countervailing incentives imply that BR(a`) ∩ BR(ah), the in-
tersection of the best response sets of the low and high ability players, is non trivial. In
contrast to the equilibrium properties of a single contest, this overlap shows that there
are outputs that both high and low ability contestants could optimally choose.

x∗hx∗`
xh,∗0

BR(a`)

BR(ah)

Figure 4: Representation best response sets of the high ability
and low ability players in the first contest.

The lemmas above show that there are three distinct intervals in each equilibrium.
These intervals are partitioned by the best response sets of the high and low ability
players. The first is the set of outputs where only low ability players are optimizing:
[0, xh,∗) = {BR(a`) \ BR(ah)}. Next is the set of outputs where both high and low
ability players are optimizing [xh,∗, x

∗
` ] = {BR(a`) ∩ BR(ah)}. Lastly is the set of

outputs where only high ability players are optimizing: (x∗` , x
∗
h] = {BR(ah) \BR(a`)}.

For each output where x ∈ BR(a`), the low ability player’s first order condition must
hold and likewise for each x ∈ BR(ah) the high ability player’s first order condition
must hold.

Continuous output distribution functions and cost functions along with indiffer-
ence over best response sets imply that the belief function must also be continuous.
Therefore, on the three intervals, the belief function must be 0, weakly increasing, and
1 respectively.

Corollary 4.6. The belief function and the distribution functions of output are contin-
uous in output on [0, x∗h]. Additionally, the belief function is given by µ(x) = 0 for all
x ∈ [0, xh,∗], µ(x) = 1 for all x ∈ [x∗` , x

∗
h] and is weakly increasing on (xh,∗, x

∗
`).

Conditions for x being in BR(ah) and BR(a`) are

BR(ah) : F ∗1 (x) + E[vi(µ(x), µ(x−i), ah)]− c
(
x

ah

)
= kh

BR(a`) : F ∗1 (x) + E[vi(µ(x), µ(x−i), a`)]− c(x) = k` = 0

• For the range of 0 ≤ x < xh,∗ we have that E[vi(µ(x), µ(x−i), a`)] = 0 as µ(x) = 0.
Therefore we have that F ∗1 (x) = c(x) for all x ∈ [0, xh,∗].

• For the range x∗` < x ≤ x∗h, E[vi(µ(x), µ(x−i), ah)] = Exj [vi(1, µ(xj), ah)] ≡ vh.
Then we have F ∗1 (x) + vh = c(x/ah) + kh, for all x ∈ [x∗` , x

∗
h].
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• For the range xh,∗ ≤ x ≤ x∗` , for all x ∈ {X`
1 ∪ Xh

1 } we know x ∈ {X`
1 ∩ Xh

1 }.
Therefore, both low and high ability players are indifferent between all outputs
in this range. Because the marginal cost of the low ability player is always more
than the marginal cost of the high ability player, this can only be true if increasing
output benefits the low ability player more than the high ability player. This
indifference condition determines the belief function over this interval and as the
difference in marginal benefits of increasing output for the high ability and low
ability players must equal the difference in marginal costs that they face today.

µ′(x)d(µ(x)) = c′(x)− 1

ah
c′(x/ah)

Combining the condition on the belief function with the best response conditions
of both the high and low ability contestants gives us the a condition on the density
function over this interval.

f ∗1 (x) =
∂

∂x
c(x)(1− F ∗1 (x)) +

∂

∂x
c

(
x

ah

)
F ∗1 (x) (†)

Given f1(x) on [0, x∗], the endpoints xh,∗, x
∗
` , and x∗h can be solved for using the following

conditions, µ(x∗`) = 1, L1(x∗`) = 1, continuity of F1 at x∗` and F1(x∗h) = 1. Additionally,
the equilibrium strategies of high ability and low ability players are determined by f1(x)
and µ(x).

xh,∗ x∗` x∗h

1

L∗1(x)

F ∗1 (x)

H∗1 (x)

Figure 5: Distribution of strategies in the first of two successive contests.
(c(e) = 1

2
e2, ah = 2)

4.2 Discussion

Observed output in the first contest from each contestant will land in one of three
intervals. If the output is between 0 and xh,∗, then the player is revealed to have low
ability, while output between x∗` and x∗h must have been produced by a player with high
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ability. Output between these ranges may have been produced by a player with either
high or low ability.

Low ability contestants either choose a low effort which produces an output that
reveals their ability to their opponent, or they decide to bluff by choosing a higher effort
which produces an output that may have been produced by a high ability contestant.
This higher effort level will provide a lower expected payoff in the first contest as the
additional cost of effort will exceed the benefit of increasing the probability of winning
this contest. These contestants are willing to put in the additional effort to have a
stronger position entering the second contest, as they benefit from appearing to have
high ability. Therefore ex-interim expected payoffs for a low ability player are negative
in the first contest and positive in the second contest.

High ability contestants either choose a high effort which produces an output that
reveals their ability to their opponent, or they decide to sandbag by choosing a lower
effort which produces an output that may have been produced by a low ability player.
Since effort is less costly to high ability players, the lower cost of reduced effort will
not offset the lower winning probability of the first contest. These players are willing
to produce the lower output in the first contest as they benefit from appearing to have
a low ability entering the second contest. The per period expected payoffs are depicted
in Figure 6.

Low Ability High Ability

xh,∗ x∗` x∗h

1

Figure 6: Beliefs and expected payoffs as a function of first period output
(c(e) = 1

2
e2 and ah = 2).

xh,∗ x∗` x∗h

1

µ(x1)
E[π1(x1)]
E[π2(x1)]
E[π1(x1) + π2(x1)]

Strategic incentives will reduce the expected output of high ability players and
increase the expected output of low ability players in the first contest as compared
to the expected output each type of player in a single contest. These distortions in
effort in the first contest effect the aggregate output and payoffs as well as the potential
outcomes of each contest.
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5 Welfare

We now analyze the welfare effects of the incentives in the first round of players to hide
their ability and the information released between contests. We compare the outcomes,
expected payoffs and the expected output of the contestants in the repeated contest
model to a benchmark where players compete with the same payoff structure but the
possibility of signaling private information through actions is suppressed.

The benchmark can be thought of in two different ways. First, there are two
separate contests as before, but the output (and winner) is not revealed after the first
contest. Winners of both contests are revealed after the second contest. Second, you
can think of it as one longer contest, where either the cost function is stretched by
factor of two, or cost is a function of the intensity of effort of the contestant over the
two periods. In the later case, contestants would choose an intensity level that they
would maintain over the two periods.

For the benchmark, we can take the strategies from the single contest analysis.
To compare this model to the repeated contest model, we assume the contestants are
symmetric ex-ante, i.e. initial beliefs are taken to be µs = µw = 1

2
. Additionally, to

compute expected aggregate output, we assume that the cost function of effort is given
by c(e) = keα. The distribution function of output for each contestant is

F (x) =

 kxα, 0 ≤ x ≤
(

1
2k

)1/α

1
2A

+ k
aαh
xα,

(
1
2k

)1/α ≤ x ≤
(
aαh+1

2k

)1/α

5.1 Outcomes

In the equilibrium for two successive contests, overlapping best response sets give a low
ability player a positive probability beating a high ability player in the first contest.
Additionally, if the low ability player enters the second contest in a stronger position,
which is always the case when they win the first contest, they may also win the second
contest.

Corollary 5.1 (Surprise Victories). A low ability player has a positive probability of
winning each contest, even if they are competing against a high ability player.

In contrast to this, in the benchmark model, the best response sets for high and
low ability players are disjoint, implying that a high ability player will always win a
contest against a low ability player.

5.1.1 Application to Multi-Stage Tournaments

This fact is used to motivate a multi-stage tournament by both Moldovanu and Sela
(2006) and Fullerton and McAfee (1999). However, as shown in Ye (2007), efficient entry
into later rounds can not be guaranteed when contestants have private information that
is preserved between rounds.

Our results show that when private information about ability is preserved and
contestants can learn about future opponents through their past output, then the best
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player may not win the tournament, and in fact, may not make it to the final round.
To see this connection, consider a four player, two stage tournament where the payoffs
of each stage is identical to each contest in the current model. Output from the first
stage is observed by all four players before the second stage. Because these outputs are
sufficient to characterize the second round strategies, the countervailing incentives in
the first round will be consistent with the current model despite the fact that a first
round winner will be playing a different opponent in the second round. The difference
from the current model stems from the fact that the loser of the first stage does not
compete in the second stage. This would alleviate some of the distortion as high ability
players would now be more motivated to win the first stage, but given the fact that
they make the final round, they would still prefer to appear weak. This would leave
the possibility of high ability players sandbagging in the first round and therefore not
making the final round.

5.2 Payoffs

Theorem 5.2 (Increased Aggregate Payoffs). The expected payoff for the low ability
player is the same per contest as the single contest benchmark, while the high ability
player receives a higher expected payoff per contest.

Proof. Equilibrium payoffs of a low ability player in the two contest model are 0. This
is equal to the expected payoff in the single contest benchmark.

Payoffs of the high type in the benchmark game are given by 1
2A

. Payoffs for the
low type are zero. If no information is revealed, then over two periods (cost functions
are stretched by 2), the expected payoffs for a high ability player are 1

A
. If we compare

this to the two period payoff of the high type in successive contests where information
is revealed, then we see that it is higher as

kh −
1

A
=

1

2A
+

(2A− 1)(1− aαhe−1/A)

2Aaαh(1− e−1/A)
=

1

2A

(
1− (2A− 1)(e−1/A − 1/aαh)

1− e−1/A

)
> 0

Therefore, two period payoffs of the high ability player are higher than one long contest.

High ability players benefit from the compression of potential outputs that arise
in the first contest from players hiding information about their ability. Therefore in
successive contests, we expect to see lower overall output and a higher reward for players
with higher ability who are benefiting from the reduction in effort levels.

5.3 Output

Theorem 5.3 (Reduced Aggregate Output). Ex-ante expected aggregate effort of the
players in each of the two contests is less than in the single contest.

Proof. Ex-ante payoffs for the players are kh
2

in the two period game, and 1
2A

in the
benchmark. Since the players are symmetric, then ex-ante, each will win each game
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Figure 6: Payoffs of high ability player in terms of ability ratio, cost: c(e) = e and c(e) = e2.

with one half chance in both the two period and in the benchmark game. Therefore,
expected payoffs can be written as

E[π1 + π2] = 1− E[c(x1) + c(x2)] =
kh
2
>

1

2A
= 1− E[2c(x)] = E[2πb]

This implies that E[c(x1) + c(x2)] < E[2c(x)]. Also, since c(·) is weakly convex, then

E

[
2c

(
x1 + x2

2

)]
≤ E[c(x1) + c(x2)] < E[2c(x)].

Because c(·) is strictly increasing, this implies that

E[x1 + x2] < E[2x]

and therefore output in the two period game is lower than the two period benchmark
where no information is revealed after the first round.

From the incentives driven by the continuation values, it is clear that in the
first contest, high ability players have an incentive to reduce effort and appear weaker.
These players have a lower expected output in the first of two contests than in the single
contest benchmark. On the other hand, low ability players have an incentive to appear
stronger, which increases their expected output above the level of the benchmark. When
the abilities of players are sufficiently different, players’ ex-ante expected outputs are
lower than in the benchmark as the effect of the high ability players outweighs that of
the low ability players. Intuitively, since the output of high ability players is higher for
a given level of effort relative to a low ability player, then changes in their effort result
in a greater change in output.

The reduction of effort in the second contest stems from increased differentiation of
players. With a high probability, one player will enter the second contest in a stronger
position than his opponent. The difference in positions will reduce competition and
on average, less total output will be produced. The weaker player faces a negative
motivation effect, while the stronger player will not compete as aggressively against a
weaker opponent.

19



Figure 7: Output in terms of ability ratio, cost: c(e) = e and c(e) = e2.

5.3.1 Application to Performance Evaluations

Ederer (2010) and Aoyagi (2010) both discuss the potential merits of performance eval-
uations in a single contest between two employees. Performance evaluations can be
thought of as dividing a contest into two separate contests, where agents choose a level
of effort before and after the evaluation. Aoyagi (2010) shows that when output is a
noisy signal of effort and abilities do not effect output, performance evaluations reduce
the expected output of the workers if the cost of effort is convex. On the other hand,
Ederer (2010) shows that when ability affects output and the contestants do not know
their ability, there are two competing effects of performance evaluations: the “evalua-
tion effect” which stems from relative position in the contest and the “motivation effect”
which which encourages the contestant who appears more productive. Strategically, the
evaluation effect discourages the employee who is further behind while the motivation
effect discourages employees who think they are less productive. This motivation effect
also provides additional incentive for effort before the performance evaluation is admin-
istered as the employee wants to appear more productive to his opponents. It is shown
that this additional effort before the performance evaluation may outweigh the loss in
output from the decreased competition after the evaluation.

Our results indicate that when employees have private information about their
abilities, that the effect in the first period is not one directional. After the midterm
evaluation a high ability employee would actually prefer to look weaker, and there-
fore will produce less effort before the evaluation. This would effectively counteract
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any additional effort exerted by low ability employees before the midterm evaluation.
Additionally, after the evaluation, both differentiation between employees abilities and
the discouragement effect stemming from one employee falling behind will combine to
reduce expected output. Therefore, in this setting, performance evaluations would not
encourage additional effort from employees.

6 Conclusion

While competing in two repeated contests with asymmetric information, contestants
have an incentive to give up potential profits in the first contest to prevent revealing their
private information. This leads to both bluffing and sandbagging in the first contest
and can cause the following inefficiencies as compared to the single contest benchmark.
First, a low ability player has a positive probability of winning both contests against
a player who has high ability. Second, repeated contests have a lower expected output
than the single contest, and additionally, the expected output of the second contest
is lower than that of the first. While the results may seem overwhelmingly negative,
in settings where the payoffs of competitors are of interest, our results are positive
as ex-ante expected payoffs are higher for the contestants. Additionally, we feel that
the intuitions developed here apply in more general dynamic settings where private
information is valuable, and we leave that for future work.

Appendix

A Equilibrium Construction

Single Contest

Because the equilibrium is monotonic, we know BRi(ah) = x∗ for i = s, w. Additionally,
each contestant must be indifferent between all x ∈ (x∗i , x

∗) when they have high ability.
Given high ability these contestants have the same marginal cost of output, and there-
fore the density of the expected output of their opponents must also be the some for both
indifference conditions to hold. Therefore, f ∗s (x) = f ∗w(x) for x ∈ (max{x∗s, x∗w}, x∗) and
F ∗s (x∗) = F ∗w(x∗) = 1. Since f ∗i (x) = µih

∗
i (x) for all x ∈ (x∗i , x

∗), then h∗s(x) ≤ h∗w(x)
for all x ∈ (max{x∗s, x∗w}, x∗). Also, Hi(x

∗
i ) = 0, which implies that x∗s ≤ x∗w. Therefore,

for the remainder of the construction, there are three intervals to consider: the best
response set of the low types of both the stronger and the weaker players, 0 ≤ x ≤ x∗s,
the best response set of the low type of the weaker player and the high type of the
strong type, x∗s ≤ x ≤ x∗w, and best response set of the high types of each player,
x∗w ≤ x ≤ x∗.

Within their best response sets, players must be indifferent between all output
levels. For example, player s given that he has ability of ah, must be indifferent to
picking all outputs between x∗s and x∗. Then, for any for any x and x′ in this interval
the payoffs for the strong contestant must be the same. This puts a condition on Hw(x),
the output distribution of the weak contestant with high ability on the interval [x∗w, x

∗],

21



as the indifference for the strong contestant implies

µwH
∗
w(x′)− c

(
x

ah

)
= µwH

∗
w(x′)− c

(
x′

ah

)
.

Rearranging and taking the limit as x→ x′,

lim
x→x′

H∗w(x)−H∗w(x′)

c( x
ah

)− c( x′
ah

)
=

∂H∗w
∂c( x

′

ah
)

=
1

µw
.

We use this to calculate the output density of the weak contestant on this interval.

lim
x→x′

H∗w(x)−H∗w(x′)

x− x′
= lim

x→x′
H∗w(x)−H∗w(x′)

c( x
ah

)− c( x′
ah

)

c( x
ah

)− c( x′
ah

)

ah(
1
ah

(x− x′))

h∗w(x′) =
∂H∗w
∂c( x

′

ah
)
c′
(
x′

ah

)
1

ah
=
c′(x′/ah)

ahµw

A similar calculation on each interval for each player allows us to characterize the
densities of the output on each of the intervals below.

• x∗w ≤ x ≤ x∗: h∗s(x) = c′(x/ah)
ahµs

, h∗w(x) = c′(x/ah)
ahµw

, f ∗s (x) = f ∗w(x) = c′(x/ah)
ah

.

• x∗s ≤ x ≤ x∗w: h∗s(x) = c′(x)
µs

, `∗w(x) = c′(x/ah)
ah(1−µw)

, f ∗s (x) = c′(x), f ∗w(x) = c′(x/ah)
ah

.

• 0 ≤ x ≤ x∗s: `
∗
s(x) = c′(x)

1−µs , `
∗
w(x) = c′(x)

1−µw , f
∗
s (x) = f ∗w(x) = c′(x).

From the definition of the best response sets and the consistency of player’s information
sets, the distribution of output for each player must satisfy

L∗i (x
∗
i ) = 1, H∗i (x∗i ) = 0, F ∗i (x∗i ) = 1− µi, F ∗i (x∗) = 1.

To find the endpoints we look at the stronger player’s distribution of strategies.
The stronger contestant does not choose zero effort with positive probability, and there-
fore L∗s(0) = 0. Using L∗s(x

∗
s) = 1 and the definition of `∗s(x) on [0, x∗s], we calculate

x∗s. ∫ x∗s

0

`∗s(x)dx = L∗s(x
∗
s)− Ls(0) =

c(x∗s)

1− µs
= 1

Then c(x∗s) = 1−µs, so that x∗s = c−1(1−µs). Similarly, x∗w = c−1(1−µw). From these
endpoints we can calculate x∗.∫ x∗w

x∗s

h∗s(x)dx =
c(x∗w)− c(x∗s)

µs
=

(1− µw)− (1− µs)
µs

=
µs − µw
µs∫ x∗

x∗w

h∗s(xs)dx = 1− µs − µw
µs

=
µw
µs∫ x∗

x∗w

f ∗s (xs)dx = c

(
x∗

ah

)
− c

(
c−1(1− µw)

ah

)
= µw
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x∗ = ahc
−1

(
µw + c

(
c−1(1− µw)

ah

))
Lastly, we can pin down the probability that the weaker player exerts no effort.∫ x∗w

x∗s

`∗w(x)dx =
1

1− µw

[
c

(
c−1(1− µw)

ah

)
− c

(
c−1(1− µs)

ah

)]
∫ x∗s

0

`∗w(x)dx =
c(c−1(1− µs))

1− µw
− 0 =

1− µs
1− µw

L∗w(0) = 1− 1− µs
1− µw

− 1

1− µw

[
c

(
c−1(1− µw)

ah

)
− c

(
c−1(1− µs)

ah

)]

=
µs − µw −

[
c
(
c−1(1−µw)

ah

)
− c

(
c−1(1−µs)

ah

)]
1− µw

The endpoints of the best response sets for each type of each player, and char-
acterizations of the density functions within these best response sets characterize the
unique equilibrium.

Repeated Contests

We solve for the equilibrium of successive contest given a parameterization of the cost
function, c(x) = kxα. The original assumptions on the cost function imply that α ≥ 1
and k > 0.

For the range of 0 ≤ x < xh,∗ we have F ∗1 (x) = kxα, and for the range x∗` < x ≤ x∗h,
we have F ∗1 (x) + vh = k x

α

aαh
+ kh.

For the range xh,∗ ≤ x ≤ x∗` , the solution to (†) is

F ∗1 (x) = Bec(x/ah)−c(x) +
∂
∂x
c(x)

∂
∂x
c(x)− ∂

∂x
c(x/ah)

, with F1(xh,∗) = kxαh,∗.

Solving for, B, the ex-ante distribution function of each player on [xh,∗, x
∗
` ] is

F ∗1 (x) =
aαh

aαh − 1
−
(

aαh
aαh − 1

− kxαh,∗
)
e
k(1−aαh )

ahα
(xα−xαh,∗).

The belief function must satisfy

d(µ(x))µ′(x) = c′(x)− 1

ah
c′(x/ah) for x ∈ [xh,∗, x

∗
` ], with µ(xh,∗) = 0.

Therefore, on this interval, the belief function is µ(x) = k(xα−xαh,∗), and the distribution
function can be written as

F ∗1 (x) =
aαh

aαh − 1
−
(

aαh
aαh − 1

− kxαh,∗
)
e
− (aαh−1)

aα
h

µ(x)
.
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Given F ∗1 (x) and µ(x) we can also calculate the output distribution of the both
the high and low ability players on [xh,∗, x

∗
` ], using 2F ∗1 (x) = L∗1(x) +H∗1 (x) and µ(x) =

h∗1(x)

2f∗1 (x)
.

H∗1 (x) = H∗1 (xh,∗) + 2

∫ x

xh,∗

µ(t)f ∗1 (t)dt

= 2µ(t)F ∗1 (t)|xxh,∗ − 2

∫ x

xh,∗

µ′(t)F ∗1 (t)dt

= 2

(
aαh

aαh − 1
−
(

aαh
aαh − 1

+ µ(x)

)
e

1−aαh
aα
h

µ(x)
)(

aαh
aαh − 1

− kxαh,x
)

L∗1(x) = 2F ∗1 (x)−H∗1 (x)

=
2aαh
aαh − 1

+ 2

((
µ(x) +

aαh
aαh − 1

− 1

)
e

1−aαh
aα
h

µ(x) − aαh
aαh − 1

)(
aαh

aαh − 1
− kxαh,x

)
Let A =

aαh
aαh−1

. Ex- ante and ex-interim strategies in the first contest are

F ∗1 (x) =


kxα, 0 ≤ x ≤ xh,∗

A− (A− kxαh,∗)e−µ(x)/A, xh,∗ ≤ x ≤ x∗`
k(x/ah)

α + kh − vh, x∗` ≤ x ≤ x∗h

L∗1(x) =


2kxα, 0 ≤ x ≤ xh,∗

2A+ 2((µ(x) + A− 1)e−µ(x)/A − A)(A− kxαh,∗), xh,∗ ≤ x ≤ x∗`
1, x∗` ≤ x ≤ x∗h

H∗1 (x) =


0, 0 ≤ x ≤ xh,∗

2(A− (A+ µ(x))e−µ(x)/A(A− kxαh,∗), xh,∗ ≤ x ≤ x∗`
2k(x/ah)

α + 2(kh − vh)− 1, x∗` ≤ x ≤ x∗h
We use the following conditions to find the unknowns, xh,∗, x

∗
` , x

∗
h, vh and kh:

1. Continuity of the belief function implies that µ(x∗`) = 1 and k(x∗`
α − xαh,∗) = 1.

2. Since x∗` = sup{BR(a`)}, then L∗1(x∗`) = 1.

L∗1(x∗`) = 2A+ 2
(
(µ(x∗`) + A− 1)e−µ(x∗` )/A − A

)
(A− kxαh,∗) = 1

⇒ kxαh,∗ = A− 2A− 1

2A(1− e−1/A)
, kx∗`

α = 1 + A− 2A− 1

2A(1− e−1/A)

3. Continuity of F ∗1 (x) at x∗` gives

A− (A− kxαh,∗)e−1/A =
kx∗`

α

aαh
+ kh − vh.

Substituting from above we get the two period payoff of the high type player

kh = vh +
1

A
+

(2A− 1)(1− aαhe−1/A)

2Aaαh(1− e−1/A)
.
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4. vh is the expected payoff in the second period of a player with high ability who
reveals that he is high type in the first period.

vh = E[vi(1, µ(x−i), ah)] =
1

A
E[1− µ(x−i)] =

1

2A

⇒ kh =
3

2A
+

(2A− 1)(1− aαhe−1/A)

2Aaαh(1− e−1/A)
.

5. The last condition is using that x∗h = supBR(ah), so that F ∗1 (x∗h) = 1.

F ∗1 (x∗h) =
kx∗h

α

aαh
+ kh − vh = 1

⇒ kx∗h
α = 1− (2A− 1)(1− aαhe−1/a)

2A(1− e−1/A)

B Proofs

Lemma 3.1 In any equilibrium, players’ distributions of output, Hs(x), Ls(x), Hw(x),
and Lw(x), are continuous on (0, x∗), where x∗ ≡ sup{BRs(a`)∪BRs(ah)} = sup{BRw(a`)∪
BRw(ah)} and inf{BRs(a`) ∪BRs(ah)} = inf{BRw(a`) ∪BRw(ah)} = 0.

Proof. The proof follows in four steps:

1. There is no x at which both players both have an atom.
If both players played some x with positive probabilities given by p1 and p2. Then
either player can increase output slightly above x, to x + ε. This would increase
the payoff of that player since the cost of effort is continuous and we can pick ε
such that c(x+ ε)− c(x) < p2. However, this implies that x is not a best response
of that player, a contradiction.

2. If a player has an atom, then it is at zero.
Assume that player i has an atom at x > 0 where x is played is probability p > 0.
Then by the continuity of the cost function in output, there is a δ > 0 such that
x̂ ∈ (x − δ/2, x), x̂ 6∈ BR−i(a−i). This implies, that player i would do better by
playing x− δ/4, and therefore x 6∈ BRi(a

i). This is a contradiction. Therefore the
output distribution functions of each type of each player is continuous on (0,∞).
This implies that Fs(x), Fw(x)

3. If x > 0 is not a best response for any ability of one of the contestants, then for
all x′ > x, x′ is not a best response for either type of either player.
Step (2) implies that payoffs are continuous, since both the cost function and
the probability of winning are continuous in x. Now, since x 6∈ {BRi(a`) ∪
BRi(ah)}, for some i = s, w, ∃x̃(ah), x̃(a`) for which πi(x̃(ah), ah) > πi(x, ah) + ε
and πi(x̃(a`), a`) > πi(x, a`) + ε. Then, there is a δ > 0 for which πi(x̃(ah), ah) >
πi(x̂, ah) and πi(x̃(a`), a`) > πi(x̂, a`), ∀x̂ ∈ (x, x + δ). Therefore every x̂ in this
neighborhood cannot be a best response of either type of player i. Additionally,
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no x̂ in this neighborhood can be a best response for any type of player −i, as
they could improve utility by lowering output to x. Therefore there is a inter-
val with positive measure for which there is no best responses for either player
for either type. Let X∗ be the set of all outputs that are greater than x and
are a best response for some player of either type. Let x∗ = inf{X∗}. Then,
necessarily x∗ has a gap (x∗ − δ′, x∗], δ

′ > 0 for which there are no best re-
sponses. However, since there is an x ∈ X∗ such that x − x∗ < δ, x cannot be a
best response. Therefore, x∗ does not exist and X∗ is empty. This implies that
sup{BRs(a`) ∪ BRs(ah)} = sup{BRw(a`) ∪ BRw(ah)}. We call this output level
x∗.

4. Each player has a type who has best response that is arbitrarily close to 0.
If this were not true, then there is a player and an x > 0 such that all x̂ ≤ x are
not a best response for any type of that player. Then from step (3), that player
has no best responses. This cannot be true in equilibrium.

Proposition 4.1

(Countervailing Incentives) ∂
∂µi
E[vi(µi, µ−i, ah)] < 0 and

∂
∂µi
E[vi(µi, µ−i, a`)] > 0 for all µi ∈ (0, 1).

Proof. In the second contest, for a given pair of beliefs, players will expect the following
payoffs:

vi(µi, µ−i, ah) = 1−min{µi, µ−i} − c
(
c−1(1−min{µi, µ−i})

ah

)

vi(µi, µ−i, a`) =

{
µi − µ−i −

[
c
(
c−1(1−µ−i)

ah

)
− c

(
c−1(1−µi)

ah

)]
if µi ≥ µ−1

0 otherwise

For a high ability contestant whose opponent has belief µi, the expected payoff in the
second contest is given by

E[vi(µi, µ−i, ah)] =

∫ 1

0

(
1−min{µi, µ−i} − c

(
c−1(1−min{µi, µ−i})

ah

))
dFµ−i(µ−i)

As the opponent believes the contestant is stronger, the change in expected payoff is

∂

∂µi
Eµ−i [vi(µi, µ−i, ah)] =

(
1 +

∂

∂µi
c

(
c−1(1− µi)

ah

))
(Fµ−i(µi)− 1)

For a low ability contestant, the expected payoff given µi is:

E[vi(µi, µ−i, a`)] =

∫ µi

0

(
µi − µ−i + c

(
c−1(1− µi)

ah

)
− c

(
c−1(1− µ−i)

ah

))
dFµ−i(µ−i)
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The effect of his opponent’s beliefs is

∂

∂µi
E[vi(µi, µ−i, a`)] =

(
1 +

∂

∂µi
c

(
c−1(1− µi)

ah

))
Fµ−i(µi)

Given the assumptions on the cost of effort, c′(e) > 0 and c′′(e) ≥ 0,

∂

∂µi
c

(
c−1(1− µi)

ah

)
= − 1

ah
c′
(
c−1(1− µi)

ah

)
1

c′(c−1(1− µi))
∈
[
− 1

ah
, 0

)
.

If we define,

d(µi) ≡
[
1 +

∂

∂µi
c

(
c−1(1− µi)

ah

)]
where d(µi) ∈

[
ah − 1

ah
, 1

)
for all µi,

then it is clear that

∂

∂µi
E[vi(µi, µ−i, ah)] = d(µi)(Fµ−i(µi)− 1) < 0

∂

∂µi
E[vi(µi, µ−i, a`)] = d(µi)Fµ−i(µi) > 0.

Corollary 4.2 In every SPBE, µ(x) is weakly increasing in x for all x ∈ X1 = Xh
1 ∩X`

1.

Proof. Assume otherwise, namely that for a given x and y which are best responses
for some ability level we have that x < y and µ(x) > µ(y). This implies that 0 ≤
µ(y) < µ(x) ≤ 1. Then by Bayes’ Rule, h1(x) > 0 and h1(y) < f1(y), which implies
that `1(y) > 0. For the strategies to be optimal it must be that x ∈ BR(ah) and
y ∈ BR(a`). Then we know that

Pr(win|y)− c(y)+E[vi(µ(y), µ(x−i), a`)]

≥Pr(win|x)− c(x) + E[vi(µ(x), µ(x−i), a`)]

Pr(win|y)− c(y/ah)+E[vi(µ(y), µ(x−i), ah)]

≤Pr(win|x)− c(x/ah) + E[vi(µi(x), µ(x−i), ah)]

This implies that

Pr(win|y)− Pr(win|x)+E[vi(µ(y), µ(x−i), a`)]− E[vi(µ(x), µ(x−i), a`)]

≥ c(y)− c(x)

Pr(win|y)− Pr(win|x)+E[vi(µ(y), µ(x−i), ah)]− E[v(µ(x), µ(x−i), ah)]

≤ c(y/ah)− c(x/ah)
The expected payoff in the second contest increases for a low ability contestant as µ
increases and for a high ability contestant decreases as µ increases. Then µ(x) > µ(y)
implies

E[vi(µ(y), µ(x−i), a`)]− E[vi(µ(x), µ(x−i), a`)] < 0,

and E[vi(µ(y), µ(x−i), ah)]− E[v(µ(x), µ(x−i), ah)] > 0.
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Combine with previous inequalities:

c(y)− c(x) < Pr(win|y)− Pr(win|x) < c(y/ah)− c(x/ah)

However, since c′′(x) ≥ 0 and c′(x) > 0, we must have that

c(y/ah)− c(x/ah) ≤ c(y)− c(y − (y/ah − x/ah))

= c(y)− c
(
x+ (ah − 1)y

ah

)
< c(y)− c(x).

This is a contradiction.

Lemma 4.4 There is no output that is played with positive probability and Pr(win|x) =
F (x) is continuous.

Proof. In a symmetric equilibrium, if an output is played with positive probability by
one type of player, then it must be played with positive probability by this type of both
players. Let x̂ ∈ {X`

1 ∪Xh
1 } be played with probability p > 0. Then

Pr(win|x̂) +
p

2
≤ Pr(win|x) for all x > x̂.

Since for some a, x̂ ∈ BR(a), then π(x̂|a) ≥ π(x|a) for all x. This implies that

Pr(win|x̂)− c(x̂/a) + E[vi(µ(x̂), µ(x−i), ai)]

≥ Pr(win|x)− c(x/ai) + E[vi(µ(x), µ(x−i), ai)]

Combing the above inequalities we have

p

2
≤ Pr(win|x)− Pr(win|x̂)

≤ E[vi(µ(x̂), µ(x−i), ai)]− E[vi(µ(x), µ(x−i), ai)] + c(x/ai)− c(x̂/ai)

By continuity of the cost function, ∃ε > 0 such that for all x ∈ (x̂, x̂ + ε), we have
c
(
x̂+ε
ai

)
− c

(
x̂
ai

)
< p

2
. Then for each x in this range we know

E[vi(µ(x̂), µ(x−i), ai)]− E[vi(µ(x), µ(x−i), ai)] > 0.

If ai = a`, then µ(x̂) > µ(x) and therefore x̂ ∈ {X`
1 ∩Xh

1 }. Similarly, if ai = ah,
then µ(x̂) < µ(x) and x̂ ∈ {X`

1 ∩Xh
1 }. In either case, x̂ ∈ {BR(1)∩BR(ah)}. However,

the inequality cannot hold for both ai = a` and ai = ah at the same time, so we have a
contradiction.

We now can use the fact that F1(x) is continuous in x and we have that Pr(win|x) =
Pr(x < x−i) = Pr(x ≤ x−i) = F1(x). Combined with Lemma 4.2, we have Pr(µ(x) <
µ(y)) ≤ Pr(win|y) = F (y) ≤ Pr(µ(x) ≤ µ(y)).
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Lemma 4.5 BR(a`) and BR(ah) are intervals where 0 = x`,∗ ≤ xh,∗ < x∗` ≤ x∗h
and we define x`,∗ = inf{BR(a`)}, x∗` = sup{BR(a`)}, xh,∗ = inf{BR(ah)} and x∗h =
sup{BR(ah)}.

Proof. The proof follows in four steps.

1. We first show that x`,∗ = 0. We do this by first showing that x`,∗ ≤ xh,∗, and then
showing that x`,∗ cannot be larger than zero.

Let xh,∗ < x`,∗. Since xh,∗ = inf{Xh
1 }, ∀ε > 0, ∃xε such that xh,∗ ≤ xε < xh,∗ + ε

and xε ∈ Xh
1 . In particular, this holds for ε∗ = x`,∗ − xh,∗. Then xε∗ ∈ {Xh

1 \X`
1}

and µ(xε∗) = 1. However, from Lemma 3.1 we would have µ(x) = 1 for all x ∈ X`
1,

which cannot hold. Therefore xh,∗ ≥ x`,∗.

If 0 < x`,∗ < xh,∗, then let xh,∗−x`,∗ = δ1. Since F1 is continuous from Lemma 3.2,
then ∃δ2 with 0 < δ2 < δ1 such that ∀x ∈ (x`,∗, x`,∗+ δ2) we have |F1(x)−F1(0)| =
|F1(x)−F1(x`,∗)| < c(x`,∗) < c(xδ2). Let xδ2 ∈ X`

1∩(x`,∗, x`,∗+δ2). Then µ(xδ2) = 0
and

E[πi(0)|a`] = F1(0) + E[vi(µ(0), µ(x−i), a`)]

> F1(xδ2) + E[vi(µ(xδ2), µ(x−i), a`)]− c(xδ2)
= E[πi(xδ2)|a`]

Then xδ2 6∈ BR(a`), a contradiction.

If 0 < x`,∗ = xh,∗, then ∃x`, xh such that x` ≤ xh, x` ∈ X`
1, xh ∈ Xh

1 , and
F1(x`) − F1(x`,∗) = F1(x`) < c(x`,∗) < c(x`) and F1(xh) − F1(xh,∗) = F1(xh) <
c(xh,∗/ah) < c(xh/ah), by the continuity of F1.

x` ∈ X`
1 implies that

E[πi(x`)|a`] = F1(x`)− c(x`) + E[vi(µ(x`), µ(x−i), a`)]

≥ F1(0)− c(0) + E[vi(µ(0), µ(x−i), a`)] = E[πi(0)|a`]

This can hold only if E[vi(µ(x`), µ(x−i), a`)] > E[vi(µ(0), µ(x−i), a`)], which im-
plies that µ(x`) > µ(0).

xh ∈ Xh
1 implies that

E[πi(x2)|ah] = F1(xh)− c(xh/ah) + E[vi(µ(xh), µ(x−i), ah)]

≥ F1(0)− c(0) + E[vi(µ(0), µ(x−i), ah)] = E[πi(0)|ah]

This can hold only if E[vi(µ(xh), µ(x−i), ah)] > E[vi(µ(0), µ(x−i), ah)], which im-
plies that µ(xh) < µ(0).

Combining these two inequalities leads to µ(xh) < µ(x`). This contradicts Lemma
4.2.

Therefore we must have 0 = x`,∗ ≤ xh,∗.
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2. We next show that xh,∗ ≤ x∗` .

If x∗` > xh,∗, then ∀x ∈ (x∗` , xh,∗), x 6∈ {X`
1 ∩ Xh

1 }. Let x′ =
x∗`+xh,∗

2
and

ε = c(xh,∗/ah) − c(x′/ah). There is a δ > 0 such that ∀x ∈ (xh,∗, xh,∗ + δ),
F (x) − F (xh,∗) < ε. Pick an xδ such that xδ ∈ (xh,∗, xh,∗ + δ) and xδ ∈ Xh

1 .
Then F1(xδ) − F1(xh,∗) = F1(xδ) − F1(x′) < ε, c(xδ/ah) − c(x′/ah) > ε, and
E[vi(µ(xδ), µ(x−i), ah)] ≤ E[vi(µ(x′), µ(x−i), ah)]. Therefore

E[πi(x′)|ah] = F1(x′) + E[vi(µ(x′), µ(x−i), ah)]− c
(
x′

ah

)
> F (xδ) + E[vi(µ(xδ), µ(x−i), ah)]− c

(
xδ
ah

)
= E[πi(xδ)|ah],

a contradiction. So we can conclude that x∗` ≤ xh,∗.

Also note that we must have x∗` ≤ x∗h. If we assume otherwise, then we can find
x ∈ {X`

1 \Xh
1 } where x > x∗h and µ(x) = 0. Lemma 4.2 rules out this possibility.

We have shown so far that 0 = x`,∗ ≤ xh,∗ ≤ x∗` ≤ x∗h.

3. We next will show that for all x ∈ (x`,∗, xh,∗), x ∈ BR(a`) and for all x ∈ (x∗` , x
∗
h),

x ∈ BR(ah).

If x`,∗ < xh,∗, then let X`
c = {x|x ∈ {(x`,∗, xh,∗)\BR(a`)}}. If x ∈ X`

c , then ∃ε > 0
such that E[πi(x)|a`] < E[πi(x′)|a`]−ε for all x′ ∈ {(x`,∗, xh,∗)∩X`

1}. This implies
that:

F1(x) +E[vi(µ(x), µ(x−i), a`)]− c(x) < F1(x′) +E[vi(µ(x′), µ(x−i), a`)]− c(x′)− ε,

where E[vi(µ(x), µ(x−i), a`)] ≥ E[vi(µ(x′), µ(x−i), a`)] as µ(x′) = 0. Therefore
F1(x) − c(x) < F1(x′) − c(x′) − ε, and for all x′ > x with x′ ∈ {(x`,∗, xh,∗) ∩X`

1},
F1(x′)− F1(x) > c(x′)− c(x)− ε.
Since F1 and c are continuous, then there is a δ(ε) > 0 such that for all x′ ∈ X`

1,
|x′− x| ≥ δ(ε). This implies that x is contained in an interval which is a subset of
X`
c . Let a and b be the infimum and supremem of this interval respectively.

– If b < xh,∗, then ∃x′ < xh,x, x
′ ∈ X`

1 where |x′ − b| < δ,∀δ > 0. Then, by the
continuity of F , ∃x′ ∈ X`

1 and F (x′) − F (b) < c(b) − c(a+b
2

). Then we know
that

F1(x′)− F1

(
a+ b

2

)
< c(b)− c

(
a+ b

2

)
and

E[vi(µ(x′), µ(x−i), a`)] ≤ E

[
vi

(
µ

(
a+ b

2

)
, µ(x−i), a`

)]
.

This implies that E[πi(x′)|a`] < E[πi(a+b
2

)|a`] which contradicts x′ ∈ BR(a`).

– If b = xh,∗, then ∀δ > 0, ∃x′ ∈ Xh
1 , s.t. |x′−b| < δ. We again can take x′ ∈ Xh

1

such that F1(x′)− F1(b) < c( b
ah

)− c(a+b
2ah

).
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∗ If x′ 6∈ X`
1 then µ(x′) = 1, but since E[vi(µ(x′), µ(x−i), ah)] ≤

E
[
vi
(
µ
(
a+b

2

)
, µ(x−i), ah

)]
, then this contradicts x′ ∈ BR(ah).

∗ If x′ ∈ X`
1, then µ(x′) ∈ (0, 1). If µ(x′) ≤ µ(a+b

2
), then this contradicts

x′ ∈ BR(a`), but if µ(x′) ≥ µ(a+b
2

), this contradicts x′ ∈ BR(ah).

Therefore X`
c must be empty.

If x∗` < x∗h, then let Xh
c = {x|x ∈ {(x∗` , x∗h)\BR(ah)}. If x ∈ Xh

c , then ∃ε > 0 such
that E[π(x)|ah] < E[π(x′)|ah]− ε for all x′ ∈ Xh

1 . This implies that

F1(x)−c
(
x

ah

)
+E[vi(µ(x), µ(x−i), ah)] < F1(x′)−c

(
x′

ah

)
+E[vi(µ(x′), µ(x−i), ah)]−ε,

where E[vi(µ(x), µ(x−i), ah)] ≥ E[vi(µ(x′), µ(x−i), ah)] as µ(x′) = 1. Therefore
F1(x)− c( x

ah
) < F1(x′)− c( x′

ah
)− ε. Since F1 and c are continuous, then this holds

only if |x′− x| ≥ δ(ε) > 0, ∀x′ ∈ BR(ah). We take a and b to be the infimum and
supremum respectively of the interval of Xh

c containing x. Note that b < x∗h, by
the definition of x∗h.

Now, there is an x′ ∈ Xh
1 where |x′ − b| < δ for all δ > 0. Therefore there is an

x′ ∈ BR(ah) such that F1(x′)−F1(b) < c( b
ah

)− c( b+a
2ah

). Note that this implies that

F1(x′)− F1( b+a
2

) < c( x
′

ah
)− c( b+a

2ah
). However, this implies that

E

[
πi
(
b+ a

2

)
|ah
]

= F1

(
b+ a

2

)
− c

(
b+ a

2ah

)
+ E

[
vi

(
µ

(
b+ a

2

)
, µ(x−i), ah

)]
> F1(x′)− c

(
x′

ah

)
+ E[vi(µ(x′), µ(x−i), ah)] = E[πi(x′)|ah].

This contradicts x′ ∈ BR(ah), and therefore Xh
c must be empty.

4. Lastly, we show that xh,∗ < x∗` , and for all x ∈ (xh,∗, x
∗
`), x ∈ {BR(a`)∩BR(ah)}.

If x∗` = xh,∗, then ∀δ > 0, there is x` ∈ BR(a`) and xh ∈ BR(ah) where |xh−x`| <
δ. Therefore, by the continuity of F1 and c, there is xh and x` for which

F1(xh)− c
(
xh
ah

)
−
(
F1(x`)− c

(
x`
ah

))
< E[vi(µ(x`), µ(x−i), ah)]− E[vi(µ(xh), µ(x−i), ah)]

= E[vi(0, µ(x−i), ah)]− E[vi(1, µ(x−i), ah)],

since E[vi(0, µ(x−i), ah)]− E[vi(1, µ(x−i), ah)] > 0. This implies that

E[πi(x`)|ah] = F1(x`)− c
(
x`
ah

)
+ E[vi(µ(x`), µ(x−i), ah)]

> F1(xh)− c
(
xh
ah

)
+ E[vi(µ(xh), µ(x−i), ah)] = E[πi(xh)|ah],
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which cannot be true as xh ∈ BR(ah).

Now define Xc = {x|x ∈ (xh,∗, x
∗
`) \ (BR(a`) ∪ BR(ah))}. From Lemma 3.1,

we know that for all x′ ∈ {(xh,∗, x∗`) ∩ (X`
1 ∪ Xh

1 )}, µ(x′) ∈ (0, 1) and therefore
x′ ∈ {X`

1 ∩Xh
1 }. If µ(x′) = 1, we must have x∗` ≤ x′, a contradiction. Similarly if

µ(x′) = 0, then we must have xh,∗ ≥ x′ which is also a contradiction.

Let x ∈ Xc be given. Then for all x′, x′′ ∈ {(xh,∗, x∗`) ∩ (X`
1 ∩ Xh

1 )} such that
x′ < x < x′′ we must have µ(x′) ≤ µ(x′′). Let µ∗ ∈ [sup{µ(x′)}, inf{µ(x′′)}]. These
are well-defined as there is at least one such x′ and x′′.

If µ(x) ≥ µ∗ then E[vi(µ(x), µ(x−i), a`)] ≥ E[vi(µ(x′), µ(x−i), a`)] for all x′ as
defined above. Therefore

F1(x′)− c(x′) + E[vi(µ(x′), µ(x−i), a`)]− ε1 > F1(x)− c(x) + E[vi(µ(x), µ(x−i), a`)]

⇒ F1(x′)− c(x′)− ε1 > F1(x)− c(x)

Then, by continuity of F1 and c, ∃δ1 > 0 such that ∀x′, |x′ − x| > δ1. Then
[x− δ1, x] ⊂ Xc.

If µ(x) < µ∗, then E[vi(µ(x), µ(x−i), ah)] ≥ E[vi(µ(x′′), µ(x−i), ah)] for all x′′ as
defined above. Therefore

F1(x′′)− c
(
x′′

ah

)
+ E[vi(µ(x′′), µ(x−i), ah)]− ε2

> F1(x)− c
(
x

ah

)
+ E[vi(µ(x), µ(x−i), ah)]

⇒ F1(x′′)− c
(
x′′

ah

)
− ε2 > F1(x)− c

(
x

ah

)
Then, by continuity, ∃δ2 > 0 such that ∀x′′, |x′′ − x| > δ2. Then [x, x+ δ2] ⊂ Xc.

In either case, if x ∈ Xc, then there is an interval with some supremum b and
infimum a such that x ∈ (a, b) ⊂ Xc.

If b < x∗` , then there is an x′ ∈ {(xh,∗, x∗`) ∩ X`
1 ∩ Xh

1 } where |x′ − b| < δ for all
δ > 0. Therefore there is an x′ ∈ {(xh,∗, x∗`) ∩X`

1 ∩Xh
1 } such that F (x′)− F (b) <

c(b/ah)− c( b+a2ah
). Note that this implies that F1(x′)− F1( b+a

2
) < c(x′/ah)− c( b+a2ah

)

and F1(x′)− F1( b+a
2

) < c(x′)− c( b+a
2

).

If µ((b+ a)/2) < µ(x′) then

E

[
πi
(
b+ a

2

)
|ah
]

= F1

(
b+ a

2

)
− c

(
b+ a

2ah

)
+ E

[
vi

(
µ

(
b+ a

2

)
, µ(x−i), ah

)]
> F1(x′)− c

(
x′

ah

)
+ E[vi(µ(x′), µ(x−i), ah)] = E[πi(x′)|ah].

If µ((b+ a)/2) ≥ µ(x′) then

E

[
πi
(
b+ a

2

)
|a`
]

= F1

(
b+ a

2

)
− c

(
b+ a

2

)
+ E

[
vi

(
µ

(
b+ a

2

)
, µ(x−i), a`

)]
> F1(x′)− c(x′) + E[vi(µ(x′), µ(x−i), a`)] = E[πi(x′)|a`].
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In either case, this contradicts x′ ∈ {X`
1 ∩Xh

1 }.
If b = x∗` , then there is an x′ ∈ Xh

1 , such that |x′ − b| < δ, and µ(x′) = 1. This
implies that F1(x′)− F1( b+a

2
) < c(x′/ah)− c( b+a2ah

), and

E

[
πi
(
b+ a

2

)
|ah
]

= F1

(
b+ a

2

)
− c

(
b+ a

2ah

)
+ E

[
vi

(
µ

(
b+ a

2

)
, µ(x−i), ah

)]
> F1(x′)− c

(
x′

ah

)
+ E[vi(µ(x′), µ(x−i), ah)] = E[πi(x′)|ah].

This contradicts x′ ∈ Xh
1 . Therefore Xc must be empty and for all x ∈ (xh,∗, x

∗
`),

we must have x ∈ {BR(a`) ∩BR(ah)}.

Corollary 4.6 The belief function and the distribution functions of output are contin-
uous in output on (0, x∗h). Additionally, the belief function is given by µ(x) = 0 for all
x ∈ [0, xh,∗], µ(x) = 1 for all x ∈ [x∗` , x

∗
h] and is weakly increasing on (xh,∗, x

∗
`).

Proof. By definition, distribution functions are right continuous. Lemma 4.3 shows
that there no output is played with positive probability by either low or high ability
players. This implies that the right limit of the distribution function is equal to the left
limit at every point. Therefore H1 and L1 are continuous and F1 = 1

2
L1 + 1

2
H1 is also

continuous.
To show that µ(x) is continuous on (0, x∗h) , note that E[πi(x)|a`] is constant for

all x ∈ BR(a`) and E[πi(x)|ah] is constant for all x ∈ BR(ah). Since both F1(x) and
c(x) are continuous on (0,∞) and E[vi(µ(x), µ(x−i), a`)] = c(x, 1)−F1(x)+k` on [0, x∗` ]
for some constant k`, then E[vi(µ(x), µ(x−i), a`)] must be continuous on this interval.
Also, E[vi(µ(x), µ(x−i), ah)] = c( x

ah
) − F1(x) + kh on [xh,∗, x

∗
h] for some constant kh,

then E[vi(µ(x), µ(x−i), ah)] is continuous on this interval. Since E[vi(µ(x), µ(x−i), ah)]
is strictly decreasing in µ(x), and E[vi(µ(x), µ(x−i), a`)] is strictly increasing in µ(x),
then µ(x) must also be continuous on BR(a`) ∪BR(ah) = [0, x∗h].

Using the above, we now show that the set [0, x∗h] \X1 has no interior, i.e. there
can be no interval [a, b] ⊂ [0, x∗h] where for all x ∈ [a, b], x 6∈ X1. This implies that X1

is dense in [0, x∗h].

If we let [ã, b̃] ⊂ [0, x∗h] \X1 be given, then define a and b to be the infimum and

supremum respectively of the interval in [0, x∗h] \X1 which contains [ã, b̃]. Neither xh,∗
nor x∗` can be contained in the interval as they are the limit point of a subset of X1.
Then the interval [a, b] must be contained within either [0, xh,∗], [xh,∗, x

∗
` ], or [x∗` , x

∗
h].

1. If [a, b] ⊂ [0, xh,∗], then for all x ∈ [a, b], f1(x) = 0 which implies that F1(x) = F1(a)
and x ∈ BR(a`). Therefore,

E[vi(µ(b), µ(x−i), a`)]− c(b) = E[vi(µ(a), µ(x−i), a`)]− c(a),

and µ(b) > µ(a). Then for all δ > 0, there is an x ∈ X1 such that |x − b| < δ.
If x ∈ X`

1, we must have µ(x) = 0 or x ∈ Xh
1 . Since µ(x) is continuous, then
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µ(x) 6= 0, so x ∈ Xh
1 . Also if x ∈ X`

1, then x ∈ Xh
1 . Either way, for all δ > 0,

there must be an x ∈ Xh
1 for which |x − b| < δ. If x ∈ Xh

1 \ X`
1, then µ(x)=1,

and E[πi(a+b
2

)|ah] > E[πi(x)|ah], a contradiction. If x ∈ Xh
1 ∩ X`

1 then either

E[πi(a+b
2

)|a`] > E[πi(a)|a`] or E[πi(a+b
2

)|ah] > E[πi(x)|ah], again a contradiction.
Therefore [a, b] 6⊂ [0, xh,∗].

2. If [a, b] ⊂ [xh,∗, x
∗
` ], then for all x ∈ [a, b], x ∈ {BR(a`) ∩BR(ah)} which implies

E[vi(µ(b), µ(x−i), a`)]− c(b) = E[vi(µ(a), µ(x−i), a`)]− c(a),

E[vi(µ(b), µ(x−i), ah)]− c(b/ah) = E[vi(µ(a), µ(x−i), ah)]− c(a/ah)

This gives

E[vi(µ(b), µ(x−i), a`)]− E[vi(µ(a), µ(x−i), a− `)] = c(b)− c(a) > 0,

E[vi(µ(b), µ(x−i), ah)]− E[vi(µ(a), µ(x−i), ah)] = c(b/ah)− c(a/ah) > 0.

However, these inequalities cannot hold at the same time, so [a, b] 6⊂ [xh,∗, x
∗
` ].

3. If [a, b] ⊂ [x∗` , x
∗
h], then for all x ∈ [a, b], x ∈ BR(ah) and therefore,

E[vi(µ(b), µ(x−i), ah)]− c(b/ah) = E[vi(µ(a), µ(x−i), ah)]− c(a/ah),

and µ(b) < µ(a) ≤ 1. Then for all δ > 0, there is an x ∈ Xh
1 such that |x− b| < δ

and µ(x) = 1. However, this contradicts the continuity of µ(x). Therefore [a, b] 6⊂
[x∗` , x

∗
h].

Therefore the interior of [0, x∗h] \X1 is empty, and X1 is dense on [0, x∗h].
Since X1 is dense on [0, x∗h] we can now show that µ(x) = 0 for any x ∈ [0, x∗h). If

µ(x) = ε > 0, then by the continuity of µ(x), ∃δ > 0 where ∀x′, |x′−x| < δ, µ(x) > ε/2.
However for all δ > 0 there is an x′ ∈ X`

1 \ Xh
1 for which µ(x′) = 0, a contradiction.

Therefore µ(x) = 0 for all x ∈ [0, x∗h). Note that µ(x∗h) = 0 which follows from a similar
argument of continuity form the left. Additionally, µ(x) = 1 for all x ∈ [x∗` , x

∗
h].

Lastly we show that µ(x) is weakly increasing on [xh,∗, x
∗
` ]. Let x, y ∈ [xh,∗, x

∗
` ]

be such that, µ(x) > µ(y) and x < y. Then there is an x′ and y′ arbitrarily close to x
and y respectively, where x′, y′ ∈ X1 and therefore µ(x′) ≤ µ(y′). This is not consistent
with µ(·) being continuous, a contradiction.

Theorem 4.3

Proof. The lemmas above show that there are three distinct intervals in each equilib-
rium. We will show that the endpoints of these intervals and the distribution functions
on the intervals are completely determined by the first order conditions of players.

The three intervals we investigate are partitioned by the best response sets of
the high and low ability players. The first is the set of outputs where only low ability
players are optimizing: [0, xh,∗) = {BR(a`) \ BR(ah)}. Next is the set of outputs
where both high and low ability players are optimizing [xh,∗, x

∗
` ] = {BR(a`)∩BR(ah)}.

Lastly is the set of outputs where only high ability players are optimizing: (x∗` , x
∗
h] =
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{BR(ah) \ BR(a`)}. For each output where x ∈ BR(a`), the low ability player’s first
order condition must hold and likewise for each x ∈ BR(ah) the high ability player’s
first order condition must hold.

Conditions for x being in BR(ah) and BR(a`) are

BR(ah) : F ∗1 (x) + E[vi(µ(x), µ(x−i), ah)]− c
(
x

ah

)
= kh

BR(x`) : F ∗1 (x) + E[vi(µ(x), µ(x−i), a`)]− c(x) = k` = 0

For the range of 0 ≤ x < xh,∗ we have that E[vi(µ(x), µ(x−i), a`)] = 0 as µ(x) = 0.
Therefore we have that F ∗1 (x) = c(x) for all x ∈ [0, xh,∗].

For the range x∗` < x ≤ x∗h, E[vi(µ(x), µ(x−i), ah)] = Exj [vi(1, µ(xj), ah)] ≡ vh.
Then we have F ∗1 (x) + vh = c(x/ah) + kh, for all x ∈ [x∗` , x

∗
h].

For the range xh,∗ ≤ x ≤ x∗` , for all x ∈ {X`
1 ∪ Xh

1 } we know x ∈ {X`
1 ∩ Xh

1 }.
Therefore, both low and high ability players are indifferent between all outputs in this
range. Because the marginal cost of the low ability player is always more than the
marginal cost of the high ability player, this can only be true if increasing output
benefits the low ability player more than the high ability player. Since the beliefs
players have in the second period completely determine their expected payoffs, this
indifference condition determines the belief function over this interval. The difference
in marginal benefits of increasing output for the high ability and low ability players
must equal the difference in marginal costs that they face today. To derive this, we
subtract the condition for X`

1 from the condition for Xh
1 .

E[vi(µ(x), µ(x−i), ah)]− E[vi(µ(x), µ(x−i), a`)] = c

(
x

ah

)
+ kh − c(x)

Taking the derivative of each side with respect to output,

∂

∂x
(E[vi(µ(x), µ(x−i), ah)]− E[vi(µ(x), µ(x−i), a`)]) =

∂

∂x
(c

(
x

ah

)
− c(x))

µ′(x) [d(µ(x))(Fµ(µ(x))− 1)− d(µ(x))Fµ(µ(x))] =
1

ah
c′
(
x

ah

)
− c′(x)

µ′(x)d(µ(x)) = c′(x)− 1

ah
c′(x/ah)

Note that on this interval, µ′(x) > 0 and therefore, Fµ(µ(x)) = F ∗1 (x) for all x ∈
(xh,∗, x

∗
`).

We now take the derivative of the condition for X`
1 and combine with the previous

equality:

f ∗1 (x) + µ′(x)d(µ(x))F ∗1 (x) = c′(x)

f ∗1 (x) +

(
c′(x)− 1

ah
c′
(
x

ah

))
F ∗1 (x) = c′(x)

f ∗1 (x) =
∂

∂x
c(x)(1− F ∗1 (x)) +

∂

∂x
c

(
x

ah

)
F ∗1 (x) (†)
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From continuity of F ∗1 (x), we also have that F ∗1 (xh,∗) = c(xh,∗). For a given xh,∗,
using the Picard - Lindelöf Theorem15, we know that there is a unique solution for
f ∗1 (x) on [xh,∗, x

∗
` ], and therefore F ∗1 (x) is determined on this interval. Additionally,

given f1(x) on [0, x∗], the endpoints xh,∗, x
∗
` , and x∗h can be solved for. With µ(x)

characterized, and the equilibrium strategies of high ability and low ability players can
be calculated.

To see why only one such xh,∗ can lead to an equilibrium, consider a different

initial condition, F ∗(x̃h,∗) = c(x̃h,∗) where x̃h,∗ > xh,∗ and the associated f̃1(x) on
[x̃h,∗, x̃

∗
` ]. First note that L(x̃h,∗) = c(x̃h,∗) > c(xh,∗) = L(xh,∗). Also, from (†), for each

x ∈ [x̃h,∗, x̃
∗
` ], f̃1(x) > f1(x). Lastly, µ̃(x̃h,∗) < µ(x̃h,∗). Since µ(x) = 1− `(x)

2f(x)
, then for

all x where µ̃(x) < µ(x), we must have ˜̀(x) > `(x). Then we have that ˜̀(x) > `(x)
and µ̃(x) < µ(x) for every x ∈ [x̃h,∗, x̃x,∗ + ε]. In order to get L̃(x̃∗`) = µ̃(x̃∗`) = 1, there

must be an x such that f̃(x) = f(x) in [x̃h,∗, x̃
∗
` ], but this cant be true because f̃(x) and

f(x) are different members of the same family of solutions, and cannot cross. Similarly,
there cannot be an equilibrium where x̃h,∗ < xh,∗.

Therefore F ∗1 (x) is uniquely characterized on X1 where X1 = [0, x∗h]. Then L∗1(x)
and H∗1 (x) are uniquely determined on this set. These distributions along with the
second period output distributions L∗2(x|µi, µ−i) and H∗2 (x|µi, µ−i) form the unique
symmetric Bayes Nash equilibrium.
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